
Design Patterns 
 

The most significant pattern for this project was Model-View-Controller. The Model is 

the component which stores the data. Our Course, Semester, and Plan classes act as the 

model since they store the names, credit hours, prerequisites, etc. The Model is independent of 

the View, which is the Bootstrap user interface and includes the tables for the user to drag-and-

drop courses and the arrows between them used to visualize the prerequisites. Lastly, our 

Executive class is used as a Controller to link the otherwise independent Model and View 

together, reading data from the Model and responding to user interaction to update the View. 

We used multiple Structural Design Patterns because they involve composing different 

objects and classes to realize new functionality. The first structural design pattern we used in 

our code is the composite, which is used to composite different constructors into a single tree 

structure to represent the user interface (the graduation plan). Another Structural Design Pattern 

we used for our code is the decorator which assists us in attaching an additional responsibility to 

an object. This pattern can allow the constructor to validate the data like monitoring the 

prerequisite of a course and the maximum number of credits in one semester. Furthermore, an 

important pattern is the facade which is mostly connected with other patterns and is the method 

that provides unified interfaces to the set of interfaces in a subsystem, meaning it is responsible 

for the result of the functionality. We used this pattern with a decorator, this pattern is therefore 

responsible for giving the result of the validation error. For example, if the user drags the course 

in the wrong semester it would give an error message to the user. 


